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5.3 Iterative Methods

A plethora of iterative methods has been proposed for the numerical solution of discrete
models in tomography. However, only the algebraic reconstruction technique (ART) and
EM have found widespread use. Thus we concentrate on these two methods and we survey
the others in subsection 5.3.3.

5.3.1 ART

ART is simply the well-known Kaczmarz method for solving (over- or underdetermined)
linear systems. Let R;f = g; be such a system with R; : H — Hi,j=1,...,p,
bounded linear operators from the Hilbert space H onto (surjection) the Hilbert space Hj,
j=1,..., p. We write

Ry 81
R = . y g = . . Rf =g.
Ry, 8p
The orthogonal projection P; in H onto the affine subspace R; f = g; is given by
Pif =f+RIR;RD™' (g — R ) (5.45)

We put forw > 0
P]‘."= (1-w)+wP;, P°= PI‘,"...P{".
The Kaczmarz procedure with relaxation factor w for solving Rf = g is then
e = pefk, (5.46)

We describe one step explicitly. Putting f*° = f* and computing f*/, j = 1,..., p,
according to

fo = Pe feiml = fRiTt 4 oRI(RR) T (g — Ry, j=1,...,p, (547)

we have f¥t! = f&P. For w = 1 and a linear system Rf = g consisting of p scalar
equations in 7 unknowns, this method was suggested by Kaczmarz (1937). Withay, ..., ap
the rows of R, it reads

. fli-1

, . a

fli = fk,J—l +ng ]f2 a]r,
lla;l

We work out the details of (5.47) for 2D transmission tomography in the standard parallel
geometry (5.12). In that case,

(R; f)(s) = (Rf)(B;,5) = 8;(s)

j=1...,p.
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We describe one step explicitly. Putting f%° = f* and computing f*/, j = 1,..., p,
according to

fHI = pefhitt = fRiTt L oRIRR) TN — R, j=1...,p, (547

we have f¥t! = f%P. For w = 1 and a linear system Rf = g consisting of p scalar
equations in  unknowns, this method was suggested by Kaczmarz (1937). Withay, ..., ap
the rows of R, it reads

k,j—1
g = it 4 o8B,
a7

j=1...,p.
We work out the details of (5.47) for 2D transmission tomography in the standard parallel
geometry (5.12). In that case,

(R; f)(s) = (Rf)(O;,5) = g (5)

with R the 2D Radon transform, considered as an operator from H = Ly(|x| < p) into
Ly(S' x (—p, p)). Thus R; is an operator from H into H; = La(—p, 0). From (2.8) we
get

(Rig)(x) =g(x-8)), x| <p,
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Detector reading

Figure 5.6. ART for 2D transmission tomography.

and hence

(RjR78)(s) = 2v/p* —528(s), Is| <p.
Thus (5.47) reads

ki (x) = fhi-l Y x-6
760 = I + i 56
(5.48)
rj =g — Rif*"

This is easy to visualize; see Figure 5.6. g; is the projection of the true object f as seen by
the detector for direction ;. R; f*7~! is the projection of the current approximation f*/=1.
The discrepancy r;(s) = g;(s) — (R; f*/~1)(s) at detector position s must come from a
mismatch of f and f%/~! along the line x - §; = s. There is no information whatsoever
concerning where on this line the mismatch occurs. Thus all we can do to correct the
mismatch is to spread the discrepancy r;(s) evenly about the line x - 6; = s, possibly with
a suitable weight. This is exactly what (5.48) is doing.

We carry out the convergence analysis for a method slightly more general than (5.47).

We replace the operator R R} of that formula by an arbitrary positive definite operator C;
in H;. This yields

= T+ oRICT g — R, =1,

RO = gk gkl = gl

(5.49)
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Special cases are the Landweber iteration (p = 1, C; = I; see Hanke, Neubauer, and
Scherzer (1995)) and fixed-block ART (dim H; finite, C ; diagonal; see Censor and Zenios
(1997)). We consider only the consistent case in which Rf = g has a solution.

THEOREM 5.1. Let C; be bounded and positive definite, and let C i = R; R; >0 j=
1,..., p. Let Rf = g be consistent. Then the iteration (5.49) is convergent, and

¥ = Prf°+Rtg,

where P is the orthogonal projection on ker(R) and R* is the generalized inverse of R
(see section 1.3.3).

Proof. For C; = R; R? this is essentially Theorem 3.9 of Natterer (1986). We give a more
elementary proof along the lines of Tanabe (1971).

Let f* be the minimal norm solution of Rf = g, i.e., Rft = g and f* € ker(R)*,
and lete¥ = f¥ — f+. Then

=06 0=0,--0,
Qj=1-wR;C;'R;, j=1,...,p.
O has the invariant subspaces ker(R) and ker(R)*, and Q = I on ker(R). We show that
QF — 0as k — oo strongly on ker(R)~, proving the theorem.

We have

1Q; FI* = I fI? = 20(f, R;C;'R; f) + o*(RIC;'R, f, R5CT'R; f)
= |l fI* — 20(R; f, Ci'R;i f) + @*(R;RIC;'R; f, Ci'R; f).

Since R; R} < C;, we have

(RiR;C;'R; £, C;'R; f) < (C;C;'R, f, C7'R; f)
=(R; f, C,-_lef),

and hence

A

1Q; FI? < £ 17 = 20(R; £, C7'R; £) + 0*(R; £, C;'R; f)
(5.50)

IfI? = @2 — w)(R; f, C]'R; f).

Since C; is positive definite and 0 < w < 2, we see that ||Q; f|| < | f|, with equality
only for R; f = 0. It follows that |Qf| < ||fI|, with equality only for f € ker(R).
If0 # f € ker(R)*, then |Qf]|l < | f]l, because otherwise f € ker(R), and hence
f = 0. For ker(R)* finite dimensional, it follows that Q is a contraction on ker(R)*, and
hence Q% — 0 strongly on ker(R)'. In the infinite dimensional case, this follows from
the following fact: Let Q be a self-adjoint operator in a Hilbert space with || Q|| < 1 and
IQfIl < I fll for f # 0. Then QF — 0 strongly as k — oo.
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For the proof of this fact, we first observe that the sequence ¢; = || Q¥ f1 is nonin-
creasing and hence convergent. It suffices to show that its limit ¢ is zero. We have

1% f — 0™ f)” = | OFSIP NG A — 20 £, 07 )
= 3%+ Srom — 25 — 0
as k — oo for each m, and hence Q% f — g for some g as k — oo. It follows that
llgll = Tim | 0*fll =,
18]l = lim | Q%! f|| = &

and hence || Qg|l = ||gl|. This is possible only for g = 0. Hence ¢ = 0. This establishes
Q% — 0 strongly in ker(R)*.
To finish the proof, we write

= f0— fr=PrfO4+ (I —Pr)f°— ft.
Since Q = I onker(R) and f+, (I + Pg) f° € range(R*), we have
fr=ft == 0% = Pr O+ Q" (I — PR)f* — f1) — Py f®

as k — oo. O

As a by-product the proof provides interesting information about the possible gain in
accuracy in one step of the iteration. From (5.50) we get

157 = FIP < 15971 = f1?
| ‘ (5.51)
— 02— )R 7 — g, CTURAIT — g))),

where f = Pg f0+ R g is the limit. Thus the error becomes smaller whenever the residual
Rjffi-1—g j does not vanish, and the amount of the improvement can easily be computed.

Theorem 5.1 is clearly reminiscent of the SOR theory for linear systems; see Ortega
and Rheinboldt (1970). In fact, there are close connections between the Kaczmarz method
for Rf = g and the SOR method for RR*u = g. More precisely, we have the next theorem.

THEOREM 5.2. Let u* be the SOR iterates for RR*u = g, i.e.,

= Cmuk + ¢y,
Co=1—-w(D+wL)'RR*, ¢, =w(D+wl) .

Then f* = R*u* are the Kaczmary iterates (5.46) for Rf = g.

So far we have considered the pure linear algebra point of view. In order to learn more
about the speed of convergence and the qualitative behavior of the iterates, we exploit the
analytic structure of the problems in tomography. We consider the case of reconstruction
from complete projections. Let H = Ly(B), let B be the unit ball in R”, and let H; =
Ly(=1, +1; w'™") with w(s) = (1 — 52)"/2. The maps R, : H — H; are defined by

(Rjf)(s) = (RNO;,5), j=1,...,p,
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with R the Radon transform (2.1), are bounded and surjective. The adjoint R}:H; - H
is given by

(Rjg)(x) = (w'™"g)(x - 8);
compare (2.7). A straightforward computation shows that
1 -2

Hence (5.45) reads

n—1
[$7=2

Pif(x) = f(x)+ W' (g = R )(x - 6)), (5.52)

and the ART iteration (5.47) assumes the form
. . . -1
A @) = A7 @) + o' (wig — Ry ) (x - 6)), d=%5€?

From Theorem 5.1 we know that, in the consistent case, f* — fT, where f7 is the solution
of minimal norm. The errors ef = f+ — f* satisfy

ek=Qw€k_1, Qw=Q;’ ‘1”, Q‘}’:(l—a))]—l—ij,

where Q; is the orthogonal projection onto the subspace R; f = 0. We obtain Q ; from
(5.52) with g; = 0, i.e,,

n—1
[$7=2|

0;fx) = f(x) - W' R; f)(x - 6)).

Let CA, A > —1/2, be the Gegenbauer polynomial of degree m, i.e., the orthogonal poly-
nomials on [—1, +1] with weight (1 — s2)*~1/2; see section 1.3.5. We put

Cn,j(¥) = Col*(x - 6;),  C=(Cm1s-.., Cmp).

e n/2
THEOREM 5.3. Let o, (1) = Z- 22 Cn @ Tp,y
I( 2 ) Cp/ (1)

n—1
QjCni=Cn, — Wam(ei “0;)Cp, ;.

The theorem was obtained by Hamaker and Solmon (1978). It implies that C,, is an
invariant subspace of Q; and hence of Q7 and of 0. We compute a matrix representation
of Q% in C,,. One can show that

dmwm=mm@Jﬁ,A4:(m:f;1), (5.53)

provided that

0; #+0, k#j, kj=1,...,p. (5.54)
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For M > p, convergence on C,, is of no interest since for these m the functions in G,
represent details that, by our resolution analysis in section 4.2, cannot be resolved anyway.
Therefore, we assume in the following that M < p.

As a direct consequence of Theorem 5.3, Q7 in Cy, is represented by the p x p matrix

n—1
Apj@) = | —wtpj1 - 1—® - —0tnj, |, am,k,j=Wam(0k-9j),

which differs from the unit matrix only in row j. Forn =2 and 6; = (cos ¢ ;,sing;)T we
have M =m + 1 and

sin((m+1) (pr—9;)))
mtDsni—gy) Pk 7 P>

Ok, j =
1, Pk = ;.
The matrix representation of Q% in C,, is
An (@) = App(@) -+ - Ap1 (). (5.55)

One can also show that

range(R*) = @Cm.

m=0

For f9 € range(R*), all ¢* are in range(R*). Thus we can study the speed of convergence
for each C,, separately simply by computing the spectral radius p,, (w) of Q% on C,, for all
m with M < p. This is facilitated by the fact that the inner products of the C,, ; are known:
With some constant ¢(r, m) we have

/ Cin j(X)Cp, j (x)dx = c(n, m)C*(@ - 6;).
Jx|<1

Numerical results for o, (w) are presented in Figure 5.7 forn = 2 and p = 30
directions 6;.

The crucial point is that the o, (w) depend decisively on the way in which the directions
¢; are ordered. First, we consider the sequential order, i.e., ¢; = 1_—17r, j=1,...,p. In
Figure 5.7(a) we see that for w = 1, convergence is fast on the C,, with m large, i.e., on the
high-frequency components, while convergence is slow on the C,, with m small, i.e., on the
low-frequency components. The situation is just the other way around for @ = 0.1. Thus
for @ = 1, the high-frequency components (such as noise) show up early in the iteration,
while overall features are determined later. It is clear that this is not a desirable behavior.
For w = 0.1 the iterations first determine the smooth parts of f and the small details only
later. This is clearly more desirable. Thus surprisingly small values of w (e.g., ® = 0.05)
are quite common in ART.
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Figure 5.7. Spectral radius pn(w) of Q® in Cy, for n = 2, p = 30 as a function
of m. () Sequential order of directions. (b) Nonsequential order. (c) Random order.

The situation changes drastically if the linear order of directions is given up in favor
of a nonsequential order; see Figure 5.7(b). For o = 1 we now have fast convergence
on all subspaces Cy,, i.e., for all spatial frequencies. The practical consequence is that it is
advisable to use an order different from the sequential one. This was discovered by Hamaker
and Solmon (1978) and was rediscovered in Herman and Meyer (1993). A good strategy
for choosing an order is to make directions as orthogonal as possible to the previous ones.
For example, for 18 parallel projections in the plane, the directions 0, 90, 140, 50, 110, 30,
160, 70, 130, 20, 100, 170, 40, 80, 150, 10, 60, 120 degrees seem to be favorable. In fact,
Hamaker and Solmon (1978) showed that they are the best possible for p = 18. However,
arandom choice of directions is almost as good; see Figure 5.7(c).

It is interesting to compare ART with other iterative methods, such as the Landweber
iteration, which came to be known as SIRT (simultaneous iterative reconstruction technique)
in tomography. The difference from (5.52) is that the update is done only after a complete
sweep through all the directions. This leads to
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p
=40 ) RICT(g — R ).
j=1

Introducing et = f*¥ — f+, we get

where now, for C; = R; R},
_ P
0" =1-w) RiC;'R
j=1

p
=I+w) (Q;—1D

j=1
with Q; as above. Thus by Theorem 5.3, C,, is again an invariant subspace of 0”, and the
matrix representation of 0 is
Zm(w) =1 — way,

where a,, is the (p, p)-matrix with elements ®m,ij» I, J = 1,..., p. For evenly spaced
directions 6;, i.e., ¢; = (j — Dn/p, j = 1,..., D, the eigenvalues of «,, are easy to
compute. Using the identity

(m 4+ Dy j =™ 4 m=2V 4 .. 4 gmim¥

where ¢ = 7 (k — j)/p, the eigenvalue equation o, x = Ax, x = (xo, ..., xp_l)T, reads

=1 m
(m + I)Z Z /eiﬂ(k_j)/pxj =Axx, k=0,...,p—1,
Jj=0 t=—m

where the prime at the £-sum indicates that £ + m is even. Putting £ +m = 2v, rearranging
yields

m p-1
(m+1) Zezmk/p Ze—Zm‘vj/Pyj =My, k=0,...,p—1,
v=0 Jj=0

where y; = e™™/Px;, j =0,..., p— 1. With the matrix F = (e 2miikip), o . 1 and
y=(0,...,yp-1)7, this reads

1
m_-}.—_F_lPFy=)\‘y,
p

where P is the diagonal matrix withm + 1 1’s and p —m — 1 0’s on the diagonal. It follows

that o, has the eigenvalue -2+ with multiplicity m + 1 and 0 with multiplicity p — m — 1.

Thus the spectral radius 5, (w) of O on C,, is

wp

1 - —£

m4+1|

Pm(@) =




|
i
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w=0

0' 5 10 15 20 25 30
Figure 5.8. Spectral radius 0, (®) of Q" in C forn =2, p=30.

Hence the condition for convergence of SIRT is 0 < w < 2.

Comparing the graph of ,,(w) in Figure 5.8 with p,, () in Figure 5.7 makes clear
why ART (with a good arrangement of directions or a favorable choice of w) is so much
better than SIRT.

In practice, ART is applied to a discretized version of the linear integral equation
governing a certain imaging system, e.g., the Radon integral equation. One represents the
unknown function f by an expansion of the form

N
f= Z Ji By
k=1

with certain basis functions By. These basis functions can be chosen, for example, as the
characteristic functions of pixels or voxels. It has been suggested to use radially symmetric
functions, the so-called “blobs”; see Lewitt (1992) and Marabini et al. (1999). With g; the
ith measurements, we then obtain

N
&= Zaikfk»
k=1

where a;; is the ith measurement of By. In imaging, this approach is sometimes called a
series expansion method, while in numerical analysis, one would call it a projection method,
or more specifically a collocation method.

5.3.2 The EM algorithm

This is an iterative algorithm for maximizing the likelihood function L from (3.9). Taking
the logarithm of L and omitting an additive constant, we can as well maximize the log
likelihood function

L]H = Z(gi log(Af)i — (Af):)- (5.56)
i=1

In order to avoid purely technical difficulties, we assume A, g > 0 elementwise. One can
easily verify that the Hessian of £ is negative semidefinite, i.e., £ is concave. Thus local
maxima of £ in f > 0 are also global ones, and f is a global maximum if and only if the
Kuhn-Tucker conditions




